登录
转载

在上一篇文章中,我们讨论了如何构建一个销售助手Agent。今天,我想分享另一个实际项目:如何构建一个

发布于 2025-02-11 阅读 89
  • 后端
转载

从学习痛点说起
记得和教育团队讨论时的场景:

小王:学生们学习进度不一样,很难照顾到每个人
小李:是啊,而且有些知识点需要反复讲解
我:主要是哪些学习场景?
小王:知识讲解、练习辅导、答疑解惑这些
我:这些场景很适合用AI Agent来协助
经过需求分析,我们确定了几个核心功能:

知识讲解
练习辅导
答疑解惑
学习追踪
技术方案设计
首先是整体架构:

from typing import List, Dict, Any, Optional
from enum import Enum
from pydantic import BaseModel
import asyncio

class LearningTask(Enum):
    EXPLAIN = "explain"
    PRACTICE = "practice"
    QUESTION = "question"
    TRACK = "track"

class LearningContext(BaseModel):
    task_type: LearningTask
    student_info: Dict[str, Any]
    subject_info: Dict[str, Any]
    history: Optional[List[Dict[str, Any]]]
    progress: Optional[Dict[str, float]]
    
class LearningAssistant:
    def __init__(
        self,
        config: Dict[str, Any]
    ):
        # 1. 初始化学习模型
        self.learning_model = LearningLLM(
            model="gpt-4",
            temperature=0.7,
            context_length=8000
        )
        
        # 2. 初始化工具集
        self.tools = {
            "explainer": KnowledgeExplainer(),
            "tutor": PracticeTutor(),
            "helper": QuestionHelper(),
            "tracker": ProgressTracker()
        }
        
        # 3. 初始化知识库
        self.knowledge_base = VectorStore(
            embeddings=LearningEmbeddings(),
            collection="learning_knowledge"
        )
        
    async def process_task(
        self,
        context: LearningContext
    ) -> Dict[str, Any]:
        # 1. 分析任务
        task_info = await self._analyze_task(
            context
        )
        
        # 2. 准备资源
        resources = await self._prepare_resources(
            context,
            task_info
        )
        
        # 3. 生成方案
        plan = await self._generate_plan(
            task_info,
            resources
        )
        
        # 4. 执行任务
        result = await self._execute_task(
            plan,
            context
        )
        
        return result
        
    async def _analyze_task(
        self,
        context: LearningContext
    ) -> Dict[str, Any]:
        # 1. 识别任务类型
        task_type = await self._identify_task_type(
            context.task_type
        )
        
        # 2. 评估难度
        difficulty = await self._evaluate_difficulty(
            context
        )
        
        # 3. 确定策略
        strategy = await self._determine_strategy(
            task_type,
            difficulty
        )
        
        return {
            "type": task_type,
            "difficulty": difficulty,
            "strategy": strategy
        }

知识讲解功能

class KnowledgeExplainer:
    def __init__(
        self,
        model: LearningLLM
    ):
        self.model = model
        
    async def explain_knowledge(
        self,
        context: LearningContext
    ) -> Dict[str, Any]:
        # 1. 分析知识点
        knowledge = await self._analyze_knowledge(
            context
        )
        
        # 2. 生成讲解
        explanation = await self._generate_explanation(
            knowledge,
            context
        )
        
        # 3. 优化表达
        optimized = await self._optimize_expression(
            explanation,
            context
        )
        
        return optimized
        
    async def _analyze_knowledge(
        self,
        context: LearningContext
    ) -> Dict[str, Any]:
        # 1. 提取关键概念
        concepts = await self._extract_concepts(
            context.subject_info
        )
        
        # 2. 分析难点
        difficulties = await self._analyze_difficulties(
            concepts
        )
        
        # 3. 确定重点
        key_points = await self._identify_key_points(
            concepts,
            difficulties
        )
        
        return {
            "concepts": concepts,
            "difficulties": difficulties,
            "key_points": key_points
        }
        
    async def _generate_explanation(
        self,
        knowledge: Dict[str, Any],
        context: LearningContext
    ) -> Dict[str, Any]:
        # 1. 选择讲解方式
        method = await self._select_method(
            knowledge,
            context
        )
        
        # 2. 生成内容
        content = await self._generate_content(
            knowledge,
            method
        )
        
        # 3. 添加示例
        examples = await self._add_examples(
            content,
            context
        )
        
        return {
            "method": method,
            "content": content,
            "examples": examples
        }

练习辅导功能

class PracticeTutor:
    def __init__(
        self,
        model: LearningLLM
    ):
        self.model = model
        
    async def guide_practice(
        self,
        context: LearningContext
    ) -> Dict[str, Any]:
        # 1. 分析能力
        ability = await self._analyze_ability(
            context
        )
        
        # 2. 生成练习
        exercises = await self._generate_exercises(
            ability,
            context
        )
        
        # 3. 提供指导
        guidance = await self._provide_guidance(
            exercises,
            context
        )
        
        return guidance
        
    async def _analyze_ability(
        self,
        context: LearningContext
    ) -> Dict[str, Any]:
        # 1. 评估水平
        level = await self._evaluate_level(
            context.history
        )
        
        # 2. 识别弱点
        weaknesses = await self._identify_weaknesses(
            context.history
        )
        
        # 3. 确定目标
        goals = await self._set_goals(
            level,
            weaknesses
        )
        
        return {
            "level": level,
            "weaknesses": weaknesses,
            "goals": goals
        }
        
    async def _generate_exercises(
        self,
        ability: Dict[str, Any],
        context: LearningContext
    ) -> List[Dict[str, Any]]:
        exercises = []
        
        # 1. 选择题型
        types = await self._select_exercise_types(
            ability
        )
        
        # 2. 生成题目
        for type in types:
            questions = await self._generate_questions(
                type,
                ability
            )
            exercises.extend(questions)
            
        # 3. 调整难度
        adjusted = await self._adjust_difficulty(
            exercises,
            ability
        )
        
        return adjusted

答疑解惑功能

class QuestionHelper:
    def __init__(
        self,
        model: LearningLLM
    ):
        self.model = model
        
    async def answer_question(
        self,
        context: LearningContext
    ) -> Dict[str, Any]:
        # 1. 理解问题
        question = await self._understand_question(
            context
        )
        
        # 2. 生成答案
        answer = await self._generate_answer(
            question,
            context
        )
        
        # 3. 提供补充
        supplement = await self._provide_supplement(
            answer,
            context
        )
        
        return supplement
        
    async def _understand_question(
        self,
        context: LearningContext
    ) -> Dict[str, Any]:
        # 1. 分析问题类型
        type = await self._analyze_question_type(
            context.subject_info
        )
        
        # 2. 提取关键信息
        info = await self._extract_key_info(
            context.subject_info
        )
        
        # 3. 关联知识点
        knowledge = await self._relate_knowledge(
            info
        )
        
        return {
            "type": type,
            "info": info,
            "knowledge": knowledge
        }
        
    async def _generate_answer(
        self,
        question: Dict[str, Any],
        context: LearningContext
    ) -> Dict[str, Any]:
        # 1. 准备答案
        answer = await self._prepare_answer(
            question
        )
        
        # 2. 添加解释
        explanation = await self._add_explanation(
            answer,
            question
        )
        
        # 3. 举例说明
        examples = await self._add_examples(
            explanation,
            context
        )
        
        return {
            "answer": answer,
            "explanation": explanation,
            "examples": examples
        }

学习追踪功能

class ProgressTracker:
    def __init__(
        self,
        model: LearningLLM
    ):
        self.model = model
        
    async def track_progress(
        self,
        context: LearningContext
    ) -> Dict[str, Any]:
        # 1. 收集数据
        data = await self._collect_data(
            context
        )
        
        # 2. 分析进展
        progress = await self._analyze_progress(
            data
        )
        
        # 3. 生成报告
        report = await self._generate_report(
            progress,
            context
        )
        
        return report
        
    async def _collect_data(
        self,
        context: LearningContext
    ) -> Dict[str, Any]:
        # 1. 学习记录
        records = await self._collect_learning_records(
            context.history
        )
        
        # 2. 练习结果
        results = await self._collect_exercise_results(
            context.history
        )
        
        # 3. 测试成绩
        scores = await self._collect_test_scores(
            context.history
        )
        
        return {
            "records": records,
            "results": results,
            "scores": scores
        }
        
    async def _analyze_progress(
        self,
        data: Dict[str, Any]
    ) -> Dict[str, Any]:
        # 1. 进度分析
        progress = await self._analyze_learning_progress(
            data
        )
        
        # 2. 效果分析
        effectiveness = await self._analyze_effectiveness(
            data
        )
        
        # 3. 趋势分析
        trend = await self._analyze_trend(
            data
        )
        
        return {
            "progress": progress,
            "effectiveness": effectiveness,
            "trend": trend
        }

实际效果
经过两个月的使用,这个学习助手Agent带来了显著的改善:

效率提升

学习速度加快50%
理解更深入
记忆更持久
体验改善

学习更有趣
互动更自然
反馈更及时
效果优化

成绩提升明显
兴趣更浓厚
信心更充足
实践心得
在开发这个学习助手Agent的过程中,我总结了几点经验:

因材施教

理解学生特点
调整教学方式
关注学习效果
循序渐进

难度要适中
进度要合理
反馈要及时
持续优化

收集反馈
更新知识库
改进算法
写在最后
一个好的学习助手Agent不仅要能讲解知识,更要理解学习的本质,帮助学生建立良好的学习习惯。它就像一个经验丰富的老师,在合适的时候给出恰当的指导。

在下一篇文章中,我会讲解如何开发一个健康助手Agent。如果你对学习助手Agent的开发有什么想法,欢迎在评论区交流。

评论区

king
4粉丝

励志做一条安静的咸鱼,从此走上人生巅峰。

0

0

4

举报